L2PHROL- Turin (Italy)

The role of formal instruction: The case of production & perception of /h/ in L2 German by French learners

Jane Wottawa LPP, UMR 7018 CNRS - U. Paris 3 / Sorbonne Nouvelle

Introduction

- L2 German L1 French
- one segmental difficulty (among others): /h/
 - frequent phone in German
 - in French, /h/ is not part of the phonemic system
- Flege's Speech Learning Model
 - "new" phones \rightarrow easy to learn
 - "similar" phones
 → difficult to learn
- German /h/ has no counterpart in French, thus it can be considered as a "new" phone and should be easy to learn

1/2

Introduction

- Kamiyama et al. (2011)
 - French learners of English
 - read speech (spectral analyses and articulatory analyses)
 - /h/-deletions and their various realizations
 - frequent "hard vowel onsets" (glottal stops or glottalized vowels)
 - only few empty or null onsets
- Zimmerer and Trouvain (2015)
 - French learners of German
 - read speech (acoustic analyses)
 - French learners of German tend to produce longer [h] than German native speakers
 - production strategies:
 - over 50% uttered as [h] onset (unvoiced, few voiced)
 - substitutions: little amount of empty onsets, more glottal stops

German [h]

- syllable initial: *heben* [^lhe:bən] (to lift); gehoben [gə^lhobən] (to lift participle)
- stressed syllables

Pronunciation teaching

- informs learners of difficulties they might encounter with second language pronunciation
- content transmission: phonological rules, phonetic variants etc.
- often form-focused instruction and exercises
 - \rightarrow this knowledge leads to increased awareness
- Gattegno (1976):

"awareness provides the dynamics that scan the field to be known and is, therefore, both a condition and a means of knowing" What role plays awareness in German L2 /h/ production and perception?

A cross task investigation

I. SPEECH PRODUCTION

[h] onset (German L2 speaker)

[?] onset (German L2 speaker)

 \mathbf{O}

empty onset (German L2 speaker)

. 10

Corpus

- ProFee-FLACGS Corpus (Progression and Feedback – French Learners Audio Corpus of German Speech)
 - assesses improvement over one University semester
 - four recordings per student (1 per month)
 - two learner groups, German native control group
 - tasks: reading, picture description
 - what does improvement in L2 speech look like?
 - what features?
 - ceiling effects?

ProFee-FLACGS Corpus

Input: Audio & Visual (AV) Input: Audio Only (AO)

Teaching Period (one semester)

Feedback Groups

- Individualized feature-grid for each submitted homework
- General pronunciation feedback in class
 - general pronunciation errors that appeared in the last assignment
 - o audio of a German native speaker

Individualized feature-grid + individual TextGrid

- Manual transcription of the sound files + automatic alignment
- General pronunciation feedback in class + Spectrograms
 - general pronunciation errors that appeared in the last assignment
 - o audio and **spectrograms** of a German native speaker

F E D B A C K + S

F

E

E

D

R

Α

С

Κ

Example of a slide

Corpus collection and annotation

- Speech production task (text, picture) to realize outside of the classroom
- Audio files were mailed to the teacher
- Manual transcription German orthography
- Automatic alignment with the web-service of *Munich Automatic Speech Segmentation* (MAUS) <u>https://clarin.phonetik.uni-muenchen.de/BASWebServices/#/services</u>
- Manual checking of the MAUS alignment

Results Deleted [h]

rate of deleted /h/ of the two learner groups

rate in %	Septe	ember		Nove	mber		
Group	AO	AV	D 1'	AO	AV	D 11	
deleted /h/	6.4	18.9	Keading	3.5	12.2	Reading	
TOKENS	171	190		198	230		

16

1/3

Results Deleted [h]

rate of deleted /h/ of the two learner groups

rate in %		Octo	ober		Dece	ember
Group	Picture	AO	AV	Picture	AO	\mathbf{AV}
deleted /h/	description	3	8.2	description	1.1	4.7
TOKENS		165	130		94	85

17

1/3

Results Deleted [h]

rate of deleted /h/ of the two learner groups

rate in %	September		October		November		December	
Group	AO	AV	AO	AV	AO	AV	AO	AV
deleted /h/	6.4	18.9	3	8.2	3.5	12.2	1.1	4.7
TOKENS	171	190	165	130	198	230	94	85
(Reading Description			Read	ding	Desc	ription	
								•

Both learners' groups delete less /h/ over time

The differences between both groups decrease over time

18

In reading more /h/ are deleted compared to picture description

Results

Main effect Group:

CG (M = 74.0 ms, SD = 86.4 ms) AO (M = 105.0 ms, SD = 53.3 ms) AV (M = 143.5 ms, SD = 166.5 ms)

Results

Main effect Group:

300

200

100

0

Duration (absolute, ms)

CG (*M* = 74.0 ms, *SD* = 86.4 ms) AO (*M* = 105.0 ms, *SD* = 53.3 ms) AV (*M* = 143.5 ms, *SD* = 166.5 ms)

Main effect Task:

description (*M* = 96.9 ms, *SD* = 43.3 ms) reading (*M* = 129.9 ms, *SD* = 150.1 ms)

3/3

Conclusion speech production

- after a semester of training
 - accuracy: only little [h] deletions
 - duration:

both learner groups longer [h] than German natives

- Accuracy:
 - AV group \rightarrow improvement was more spectacular
 - two possible reasons
 - the training was more effective
 - the AO group was closer to a ceiling effect?
- Reading seems more challenging
 - grapheme to phoneme correspondence?

II. SPEECH PERCEPTION

Methods

- only one student group
- five weeks of pronunciation teaching
- perceptual discrimination tests (AXB)
 - before the training started
 - after five weeks of training
 - \rightarrow 8 students performed both tests
- perceptual discrimination test (AXB)
 - programmed with PsychoPy
 - presented minimal pairs (real German words) with
 - [h] or [?] onset: Halter [^Ihalte] vs Alter [^I?alte], geheilt [gə^Ihaılt] vs geeilt [gə^I?aılt]

- short and long vowels
- accuracy and reaction times

Expectations

- Results from speech production:
 - rate of /h/ deletions decreased over the semester
 >speech production benefitted from explicit pronunciation teaching
- Expectations for speech perception
- speech perception should benefit in the same way from formal instruction
 - > syllable initial /h/ should be better perceived after increased awareness

Results - accurracy

Pre-test		M (in %)	SD (in %)	
word initial	[h]	56.3	19.8	
word initial	[?]	43.8	15.3	
word internal	[h]	48.2	21.5	
word internal	[?]	46.4	19.8	

Post-test		<i>M</i> (in %)	SD (in %)
word initial	[h]	64.6	20.8
woru minai	[?]	66.7	21.8
word internal	[h]	62.5	31.4
word internal	[?]	58.9	22.2

Results - accurracy

Pre-test			(in %)	SD (in %)	
word initial	[h]		56.3	19.8	
word initial	[?]		43.8	15.3	
word internal	[h]	I	48.2	21.5	
word internat	[?]	C	46.4	19.8	
		R E			
Post-test			(in %)	SD (in %)	
word initial	[h]	E S	64.6	20.8	
word mitiai	[?]		66.7	21.8	
word internal	[h]		62.5	31.4	
word internat	[?]		58.9	22.2	

Results - accurracy

Pre-test		M (in %)		<i>SD</i> (in %)	t-values	p-values
word initial	[h]		56.3	19.8	t(7) = 0.89	<i>p</i> = .40
word mittai	[?]		43.8	15.3	t(7) = 1.16	<i>p</i> = .29
word internal	[h]	I	48.2	21.5	t(7) = 0.24	<i>p</i> = .82
word internat	[?]		46.4	19.8	t(7) = 0.51	<i>p</i> = .63
Post-test		A	(in %)	<i>SD</i> (in %)	t-values	p-values
word initial	[h]	E	64.6	20.8	t(7) = 1.99	<i>p</i> = .09
word initial	[?]		66.7	21.8	t(7) = 2.16	p = .07
word internal	[h]		62.5	31.4	t(7) = 1.13	<i>p</i> = .30
	[?]		58.9	22.2	t(7) = 1.14	<i>p</i> = .29

Results - reaction times

Conclusion speech perception

- Improvement could be observed but it was not statistically significant
- It seems that for German /h/ awareness does help only little with speech perception
- Neither accuracy nor reaction times showed significant improvement

General conclusion

- Awareness seems to help more with the production of German [h] than with its perception
- Asymmetry might be explained with the properties of German [h]
 - articulatory gesture in order to produce [h] can be easily performed → production is not difficult
 - from an acoustic point of view [h] is not rich in information → perception might be difficult

L2PHROL-Turin (Italy)

Grazie!

Thank you!

